Pressure-induced hydride superconductors above 200 K

Cite as: Matter Radiat. Extremes 6, 068201 (2021); doi: 10.1063/5.0065287 Submitted: 31 July 2021 • Accepted: 15 September 2021 • Published Online: 6 October 2021

Xiaohua Zhang,^{1,2} Yaping Zhao,¹ Fei Li,¹ and Guochun Yang^{1,2,a}

AFFILIATIONS

¹State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

²Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

Note: This paper is a part of the Special Topic Collection on High Pressure Science 2021. ^{a)}**Author to whom correspondence should be addressed:** yanggc468@nenu.edu.cn

ABSTRACT

Although it was proposed many years ago that compressed hydrogen should be a high-temperature superconductor, the goal of room-temperature superconductivity has so far remained out of reach. However, the successful synthesis of the theoretically predicted hydrides H_3S and LaH_{10} with high superconducting transition temperatures T_C provides clear guidance for achieving this goal. The existence of these superconducting hydrides also confirms the utility of theoretical predictions in finding high- T_C superconductors. To date, numerous hydrides have been studied theoretically or experimentally, especially binary hydrides. Interestingly, some of them exhibit superconductivity above 200 K. To gain insight into these high- T_C hydrides (>200 K) and facilitate further research, we summarize their crystal structures, bonding features, and electronic properties, as well as their superconducting mechanism. Based on hydrogen structural motifs, covalent H_3S with isolated hydrogen and several clathrate superhydrides (LaH_{10} , YH₉, and CaH₆) are highlighted. Other predicted hydrides with various H-cages and two-dimensional H motifs are also discussed. Finally, we present a systematic discussion of the common features, current problems, and future challenges of these high- T_C hydrides.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0065287

I. INTRODUCTION

Room-temperature superconductivity has been one of the most attractive targets in condensed matter physics ever since Kamerlingh Onnes found the superconducting transition of Hg at 4.2 K in 1911.¹ However, the highest superconducting transition temperature $T_{\rm C}$ that can be achieved by cuprates, the most representative class of unconventional superconductors, is 135 K at ambient pressure,² and even at high pressure only reaches as high as 160 K.³ On the other hand, it has been proposed that under high pressure, solid hydrogen should achieve metallization and high- $T_{\rm C}$ superconductivity (100–760 K) in either molecular^{4–6} or atomic phases,^{7,8} based on Bardeen–Cooper–Schrieffer (BCS) theory,⁹ although the pressure required is far beyond what can be experimentally achieved.^{10,11} Excitingly, however, hydrides are predicted to be able to achieve high- $T_{\rm C}$ superconductivity at relatively low pressure owing to chemical precompressions,¹² and this has led to an upsurge in research on compressed hydrides.

Thus far, remarkable achievements have been made with pressure-induced superconductivity in hydrides,¹³ bringing room-

temperature superconductivity within reach. In terms of element category, almost all of the known binary hydrides have been studied theoretically or experimentally.^{14–20} On the other hand, a plethora of ternary hydrides exhibiting superconductivity are also being explored, and there is a broad development space in terms of diverse chemical compositions, synergistic charge transfer, and combinations of the merits of different elements.^{21–38}

As proposed by Ashcroft,¹² hydrides can achieve superconductivity under much lower pressures than metallic hydrogen. Following this principle, numerous hydrides are predicted to have $T_{\rm C}$ values above 200 K,^{18,39–42} with some of them exhibiting superconductivity near room temperature and even higher.^{21,22,43} Even more interestingly, these high- $T_{\rm C}$ hydrides (>200 K) contain diverse hydrogen configurations, such as isolated atomic hydrogen in covalent hydrides, two-dimensional (2D) H motifs, and various 3D H cages with covalent H–H bonding character.

It is worth noting that theoretical calculations play a crucial role in identifying conventional superconductors such as H_3S ,^{44,45} La H_{10} ,^{46,49} YH₉,^{46,50} and PrH₉,⁵¹ and provide effective guidance for

experimental synthesis.^{52,53} Meanwhile, more and more advanced prediction methods are being developed, inevitably accelerating the development of hydride superconductors.^{54–61} Theoretical calculations also have unique advantages in revealing the microscopic mechanism of superconductivity from both physical and chemical aspects, including chemical bonding, charge distribution, and electronic properties, as well as quantum effects.^{62–65}

To gain insight into the features of high- $T_{\rm C}$ hydrides and provide inspiration for research on superconductors, in this review, the reported hydrides with $T_{\rm C}$ above 200 K are summarized with regard to their crystal structures, chemical bonds, electronic properties, and origin of superconductivity. The focus is mainly on covalent H₃S and several clathrate superhydrides (LaH₁₀, YH₉, and CaH₆) that have been predicted by theory and verified by experiment, although other theoretically predicted hydrides with clathrate H cages and 2D H motifs are also described. Finally, a comprehensive discussion and conclusions are presented, including a description of current problems and future challenges.

II. HIGH-PRESSURE COVALENT HYDRIDES

High-pressure covalent hydrides with $T_{\rm C}$ above 200 K are exemplified by Im-3m H₃S. The good agreement between experimental measurements^{45,66} and theoretical calculations⁴⁴ provides a firm basis for the exploration of pressure-induced superconducting hydrides and for unveiling the mechanism of their superconductivity. In another important development, it has been demonstrated that the $T_{\rm C}$ value of H₃S can be significantly elevated via hole-doping.^{43,67}

The high- $T_{\rm C}$ superconductivity of H₃S was observed in a highpressure experiment aimed at verifying the predicted superconductivity of H_2S^{45} The T_C of 203 K and its pressure dependence are in good agreement with the theoretical prediction for Im-3m H₃S⁴⁴ thus attracting great research interest. Im-3m H₃S contains body-centered cubic (bcc) S sites, and a nested [H₃S] sublattice in which each H atom bonds symmetrically with two S atoms forming a S-centered SH₆ octahedron [Fig. 1(a)], indicating the presence of atomic hydrogen.⁶⁸ Based on the weights of atomic orbitals, the large overlap of H s and S 3p orbitals below the Fermi level $E_{\rm F}$ indicates significant hybridization between them and the formation of a strong polar S-H covalent bond [Fig. 1(b)], which is consistent with the calculated electron localization function.44 From its calculated electronic properties, H₃S is a good metal with a large density of states (DOS) peak near $E_{\rm F}$ and a band characterization of "flat band-steep band" [Fig. 1(b)]. Further, the Fermi surface for the single band contributing the main DOS near the $E_{\rm F}$ shows significant pockets [colored by the Fermi velocity in Fig. 1(c)].⁶⁴ These results demonstrate that Im-3m H₃S is a potential covalent metallicity-driven conventional superconductor. As expected, Im-3m H₃S is calculated to have strong electron-phonon coupling (EPC) with λ = 2.19, a large logarithmic average phonon frequency ω_{\log} of 1334.6 K, and a high $T_{\rm C}$ value of 204 K at 200 GPa ($\mu^* = 0.1$). From the corresponding phonon density of states (PHDOS) and Eliashberg spectral function $a^2 F(\omega)$ [Fig. 1(d)], such a high $T_{\rm C}$ mainly originates from the large EPC contribution (82.6%) of a high-frequency hydrogen vibrational mode (>20 THz).⁴

Great effort has been made to further verify whether Im-3m H₃S is the source of high- $T_{\rm C}$ superconductivity in compressed H₂S. Extensive structural searches for S–H system with different stoichiometries indicate that H₂S becomes unstable and decomposes into H₃S and elemental β -Po sulfur above 43 GPa.^{64,69} Specifically,

pressure-induced metallic H₃S shows a phase transition from trigonal *R3m* to cubic *Im-3m* at 180 GPa. Moreover, the two phases of H₃S are estimated to have $T_{\rm C}$ values of 155–166 K for the *R3m* phase at 130 GPa and 191–204 K for the *Im-3m* structure at 200 GPa.⁴⁴ These theoretical results have been confirmed by synchrotron x-ray diffraction (XRD) combined with electrical resistance measurements [Figs. 1(e)–1(g)].⁶⁶ Therefore, the conclusion has been reached that cubic *Im-3m* H₃S is the primary contributor to the high $T_{\rm C}$ above 200 K in compressed H₂S owing to the metallicity driven by strong covalent bonds and the stabilization of atomic hydrogen by sulfur.^{64,68} In addition, the quantum nature of the proton has a crucial effect on the stable pressure and symmetric hydrogen bonds in *Im-3m* H₃S.⁶³

As an effective method to modulate superconductivity of materials, $^{70-73}$ atomic substitution is also performed to elevate the $T_{\rm C}$ of H₃S. The results demonstrate that partial substitution of S with P, C, and Si atoms significantly enhances the $T_{\rm C}$ to above 280 K. 43,67 In detail, the PDOS of Im-3m H₃S exhibits a conspicuous van Hove singularity below $E_{\rm F}$ [Fig. 1(b)], implying that hole doping probably moves the van Hove singularity to $E_{\rm F}$, thus increasing the DOS at $E_{\rm F}$ and strengthening EPC. This can be realized by partial substitution of three kinds of atoms (e.g., P_{0}^{67} C, 43 and Si⁴³) with fewer valence electrons than an S atom. Moreover, the DOS at $E_{\rm F}$ and the EPC constant first increase and then decrease with increasing doping content [Figs. 1(h), 1(i), and 1(k)]. Near room-temperature superconductivity is realized in H₃S_{0.925}P_{0.075} $(T_{\rm C} = 280 \text{ K at } 250 \text{ GPa})$,⁶⁷ $H_3S_{0.962}C_{0.038}$ ($T_{\rm C} = 289 \text{ K at } 260 \text{ GPa}$), and $H_3S_{0.960}Si_{0.040}$ ($T_C = 283$ K at 230 GPa) [Figs. 1(j) and 1(l)].⁶⁷ Note that the pressure-dependent T_C values for P/C/Si-doped H₃S indicate that application of an appropriate pressure is also an important way to maximize the $T_{\rm C}$ of doped H₃S [Figs. 1(j) and 1(l)]. On the other hand, the high-T_C superconductivity of H₃S_{0.962}C_{0.038} also provides a possible explanation for the recent experimental observation of roomtemperature superconductivity in a highly compressed C-S-H system [Fig. 1(m)].²

III. CLATHRATE SUPERHYDRIDES

A. Experimentally verified LaH₁₀, YH₉, and CaH₆

Clathrate superhydrides comprise another important class of superconductors with $T_{\rm C}$ above 200 K. Typical representatives are Fm-3m LaH₁₀,^{47,48} $P6_3/mmc$ YH₉,⁵⁰ and Im-3m CaH₆,⁷⁴ which have been synthesized with direct guidance from theoretical predictions.^{46,49,75} Their synthesis not only opens a potential route to achieving room-temperature superconductivity in clathrate super-hydrides, but also indicates that other predicted high- $T_{\rm C}$ clathrate superhydrides might be successfully synthesized.

Fm-3*m* LaH₁₀ is predicted to adopt a sodalite-like face-centered cubic (fcc) structure, in which each La atom is surrounded by a cage of 32 H atoms [Fig. 2(a)].⁴⁹ Each H-cage consists of 6 H-square and 12 H-hexagon rings, with two inequivalent H atoms, named H₁ and H₂. The H–H bond length is close to that of the predicted atomic metallic hydrogen near 500 GPa (1.0 Å),⁹ indicating that H atoms are bonded to each other with covalent bonds.⁶⁵ As a result, all H vibrations can effectively participate in the EPC process, leading to strong EPC ($\lambda = 2.2$) and high $T_{\rm C}$ values of 257–274 K with $\mu^* = 0.1$ –0.13 at 250 GPa.⁴⁹ This prediction has been verified by two experimental groups,^{46,47} who have reported an La hydride LaH_{10±x} (x < 1) with $T_{\rm C} \approx 260$ K at about 190 GPa or 250 K at about 170 GPa [Fig. 2(e)].

FIG. 1. (a) Crystal structure of Im-3m H₃S.⁴⁴ (b) Band structure of Im-3m H₃S.⁶⁴ (c) Main pocket of the Fermi surface of H₃S.⁶⁴ (d) Phonon dispersion curves and Eliashberg spectral function.⁴⁴ (e) and (f) Integrated XRD patterns obtained by subtraction of the background for sulfur hydride and sulfur deuteride, respectively.⁶⁶ (g) Pressure dependence of $T_{\rm C}$ of sulfur hydride (black points) and sulfur deuteride (red points).⁶⁶ (h) DOS and λ vs substitution concentration.⁵⁷ (i) Linear relationship between λ and DOS.⁶⁷ (j) $T_{\rm C}$ of H₃S_{0.925}P_{0.075} (red solid line) and H₃S_{0.99}P_{0.1} (black dashed line) vs pressure.⁶⁷ (k) DOS of H₃S at 220 GPa (black), H₃S_{0.960}C_{0.040} at 220 GPa (solid red), and H₃S_{0.960}C_{0.040} at 240 GPa (dashed red), with their Fermi energies set to be zero.⁴³ (l) $T_{\rm C}$ (shaded) vs pressure at $x = 0.040.^{43}$ (m) Temperature-dependent electrical resistance of the C–S–H system at high pressure.²² (a) and (d) Reprinted with permission from Duan *et al.*, Sci. Rep. **4**, 6968 (2014). Copyright 2014 Nature Publishing Group. (b) and (c) Reprinted with permission from Bernstein *et al.*, Phys. Rev. B **91**, 060511 (2015). Copyright 2015 American Physical Society. (e)–(g) Reprinted with permission from Einaga *et al.*, Nat. Phys. **12**, 835 (2016). Copyright 2016 Nature Publishing Group. (h)–(j) Reprinted with permission from Ge *et al.*, Phys. Rev. B **93**, 224513 (2016). Copyright 2016 American Physical Society. (k) and (l) Reprinted with permission from Ge *et al.*, Nater. **586**, 373 (2020). Copyright 2020 Nature Publishing Group.

Furthermore, the bonding nature and superconducting mechanism of LaH_{10} have been extensively investigated. Intuitively, La atoms are thought to transfer charge to H atoms, suppressing the formation of H_2 molecules (extra charges occupy the antibonding orbitals).⁴⁹ However, based on the charge density of LaH_{10} , besides the H–H bonds, the La– H_1

bonds also exhibit covalent character from the connected charges between La and H₁ atoms [Fig. 2(b)]. The charge density difference also indicates charge accumulation in these regions.⁶⁵ In addition, on removing all H atoms in LaH₁₀, it was found that the metal framework of La atoms generates excess electrons in the interstitial regions, and

FIG. 2. (a) Structure of LaH₁₀.⁶⁵ (b) Total charge density ρ_{tot} of LaH₁₀.⁶⁵ (c) Partial DOS of LaH₁₀.⁶⁵ (d) Band structure of LaH₁₀.⁶⁵ (e) Observed superconductivity in LaH₁₀.⁴⁷ (f) Summary of experimental and theoretical *T*_C values in LaH₁₀.⁶² (g) Structure of YH₉.⁵⁰ (h) Phonon spectra and Eliashberg spectral function for YH₉.⁴⁶ (i) Temperature-dependent electrical resistance of yttrium superhydride at high pressures.⁵⁰ (a)–(d) Reprinted with permission from Liu *et al.*, Phys. Rev. B **99**, 140501 (2019). Copyright 2019 American Physical Society. (e) Reprinted with permission from Drozdov *et al.*, Nature **569**, 528 (2019). Copyright 2019 Nature Publishing Group. (f) Reprinted with permission from Errea *et al.*, Nature **578**, 66 (2020). Copyright 2020 Nature Publishing Group. (g) and (i) Reprinted with permission from Snider *et al.*, Phys. Rev. Lett. **126**, 117003 (2021). Copyright 2021 American Physical Society. (h) Reprinted with permission from Peng *et al.*, Phys. Rev. Lett. **119**, 107001 (2017). Copyright 2017 American Physical Society.

transfers interstitial electrons to H cages, facilitating stabilization of LaH₁₀. $^{76.77}$ Therefore, the bonding nature between La atoms and H₃₂ cages is characterized as mixed ionic–covalent bonding. 76

On the other hand, there are two van Hove singularities with a separation of ~90 meV near E_F [Fig. 2(c)], originating from the holelike and electron-like bands [Fig. 2(d)]. Specifically, the two bands arise from the splitting of the symmetry-protected topological states at the equivalent high-symmetry L points.⁶⁵ A high H-derived DOS at E_F and strong hybridization between La f and H₁ s orbitals are manifested in the DOS and band structure [Figs. 2(c) and 2(d)]. Moreover, the four Fermi surfaces corresponding to four bands crossing $E_{\rm F}$ exhibit strong coupling between the hybridized states (La and H₁ atoms as well as H₁ and H₂ atoms) and the phonon modes in the whole frequency range, giving rise to two nodeless, anisotropic superconducting gaps.⁷⁸ Consequently, the unusual bonding and electronic properties induce a highly optimized electron–phonon interaction that favors coupling to high-frequency hydrogen phonons,⁷⁹ and H-dominated high- $T_{\rm C}$ superconductivity in *Fm*-3*m* LaH₁₀.⁸⁰ In addition, the pressure dependence of EPC mainly accounts for the decrease in $T_{\rm C}$ with pressure,^{80,81} supporting the

experimental measurements.⁴⁷ Notably, these characteristics are very similar to those of Im-3m H₃S, indicating some common features of high- $T_{\rm C}$ hydrides. Besides, as in H₃S, the inclusion of quantum effects in LaH₁₀ brings the theoretically stable pressure and $T_{\rm C}$ values into better consistency with experimental measurements [Fig. 2(f)].⁶²

Similar to Fm-3m LaH₁₀, several other pressure-induced superhydrides with H₃₂ cages and the same symmetry have also been predicted to exhibit strong H-dominated EPC and high- $T_{\rm C}$ superconductivity above 200 K, such as YH₁₀ with $T_{\rm C}$ = 303–326 K at 250–400 GPa,^{46,49} Scor Y-substituted LaH₁₀ with $T_{\rm C}$ enhanced compared with LaH₁₀,⁸² and TbH₁₀ with $T_{\rm C}$ > 270 K at 250 GPa,⁸³ although these await experimental confirmation. However, not all LaH₁₀-type superhydrides have $T_{\rm C}$ above 200 K (e.g., $T_{\rm C}$ < 56 K for CeH₁₀^{46,84} and $T_{\rm C}$ < 82 K for UH₁₀^{85,86}), indicating that the particular metal atom has a vital effect on $T_{\rm C}$ even in the same hydrogen lattice framework.

Encouragingly, another predicted high- $T_{\rm C}$ clathrate superhydride, $P6_3/mmc$ YH₉, has recently been synthesized.^{46,50} In contrast to LaH₁₀, in *P*6₃/*mmc* YH₉, the Y atom is located in an H₂₉ cage, consisting of six H-square, H-pentagon, and H-hexagon rings [Fig. 2(g)]. This densely packed arrangement leads to a much-reduced ΔPV term, stabilizing the structure. The large DOS contributed by Y *d* and H *s* orbitals and two van Hove singularities near *E*_F induce strong EPC ($\lambda = 4.42$) and a high *T*_C value of 276 K ($\mu^* = 0.1$) at 150 GPa [Fig. 2(h)], which has been unambiguously verified in a recent experiment⁵⁰ [Fig. 2(i)]. Note that the Y atoms contribute a large EPC fraction of 45%. Interestingly, *P*6₃/*mmc* ScH₉ is predicted to have a lower *T*_C (<200 K at 120 GPa) than YH₉, although Sc has a lower atomic weight than Y. On the other hand, PrH₉⁵¹ and ThH₉,⁸⁷ which are isostructural to YH₉, also have much lower *T*_C values of 8.9 K at 120 GPa and 145 K at 150 GPa, respectively.

Beside LaH₁₀-type and YH₉-type structures, there is also a class of experimentally verified high- $T_{\rm C}$ clathrate superhydrides with a sodalite-like bcc structure with *Im*-3*m* symmetry. In fact, CaH₆ with *Im*-3*m* symmetry is the first predicted clathrate superhydride with

FIG. 3. (a) Structure of CaH₆.⁷⁵ (b) Phonon dispersion relation and Eliashberg spectral function.⁷⁵ (c) Synchrotron XRD pattern of superconducting calcium hydrides.⁷⁴ (d) Superconducting measurements in the calcium hydride CaH_x.⁷⁴ (e) XRD patterns and Le Bail refinements of *Im-3m* YH₆ and *I4/mmm* YH4.⁹¹ (f) Temperature dependence of electrical resistance in YH₆ and YD₆.⁹¹ (g) Structure of Li₂MgH₁₆.²¹ (h) Phonon dispersion relations, projected phonon densities of states (PHDOS), and Eliashberg spectral function.²¹ (i) Structure of AcH₁₀..⁹⁴ (k) *T*_C(P) functions.⁹⁴ (a) and (b) Reprinted with permission from Wang *et al.*, Proc. Natl. Acad. Sci. U. S. A. **109**, 6463 (2012). Copyright 2012 Proceedings of the National Academy of Sciences of the United States of America. (c) and (d) Reprinted with permission from Ma *et al.*, arXiv:2103.16282v2 (2021). (e) and (f) Reprinted with permission from Troyan *et al.*, Adv. Mater. **33**, 2006832 (2021). Copyright (2021) Wiley-VCH. (g) and (h) Reprinted with permission from Semenok *et al.*, J. Phys. Chem. Lett. **9**, 1920 (2018). Copyright (2018) American Chemical Society.

 $T_{\rm C}$ > 200 K.⁷⁵ In this kind of structure, the metal atoms possess a bcc configuration, and are accommodated in H₂₄ cages consisting of six H-square and eight H-hexagon rings [Fig. 3(a)]. A high phonon frequency and large DOS at $E_{\rm F}$ induce strong H-dominated EPC [Fig. 3(b)] and high $T_{\rm C}$, with examples including CaH₆ with $T_{\rm C}$ of 220–235 K at 150 GPa,⁷⁵ MgH₆ with $T_{\rm C}$ of about 260 K above 300 GPa,⁸⁸ and YH₆ with $T_{\rm C}$ of 251–264 K at 120 GPa.⁸⁹ Again, Im-3m ScH₆ has a lower $T_{\rm C}$ (169 K at 350 GPa) than YH₆.⁹⁰ What is noteworthy is that CaH₆ and YH₆ have been successfully synthesized,^{74,91} as demonstrated by the XRD and temperature-dependent electrical resistances [Figs. 3(c)-3(g)]. These remarkable achievements provide an effective route to develop more high- $T_{\rm C}$ superconductors through combining theoretical predictions with experimental syntheses. More interestingly, two phases (namely, *Pm*-3*m* and *Fd*-3*m*) of CaYH₁₂, with the same hydrogen cage as CaH₆, are predicted to have $T_{\rm C}$ values up to 230 and 258 K, respectively.

B. Other theoretically predicted clathrate superhydrides

In addition to the three classes of clathrate superhydrides described above (i.e., LaH_{10}-type with H_{32} cage, 49 YH_9-type with H_{29}

cage,⁴⁶ and CaH₆-type with H₂₄ cage⁷⁵), other varieties of clathrate superhydrides are also predicted to exhibit high- $T_{\rm C}$ superconductivity above 200 K. One outstanding example is the recently predicted *Fd*-3m Li₂MgH₁₆.²¹ Based on the idea that electron doping is expected to lead to occupation of the antibonding orbital of H–H covalent bonds and the breakup of H₂ molecules, Li is introduced into binary MgH₁₆ with large numbers of H₂ units, achieving atomic hydrogen cages [Fig. 3(g)]. Each Li atom is surrounded by one H₁₈ cage, which is opened to connect to neighboring H₁₈ cages. Each Mg atom is situated in one closed H₂₈ cage. It has been proposed that a pyrochlore-type Li framework provides electrons to H-cages by forming electrides, not only stabilizing the clathrate H cages but also enhancing the H-dominated DOS at $E_{\rm F}$.⁷⁷ As a result, Li₂MgH₁₆ is predicted have strong EPC ($\lambda = 3.35$) and a superhigh $T_{\rm C}$ of 351 K at 300 GPa [Fig. 3(h)] and even as high as ~473 K at 250 GPa.

Despite being in the same group as La, the reaction of Ac with H_2 is predicted to result in two stable high- T_C compositions, namely, AcH₁₀ and AcH₁₆.⁹⁴ *R*-3*m* AcH₁₀ with H₃₂ cages is in sharp contrast with *Fm*-3*m* LaH₁₀ [Fig. 3(i)]. The shortest H–H distance in *R*-3*m* AcH₁₀ is 1.07 Å at 150 GPa. For *P*-6*m*2 AcH₁₆ with higher H content, each Ac atom is surrounded by 12 H atoms and 6 H₂ molecules with an H–H distance of 0.87 Å at 150 GPa [Fig. 3(j)]. Meanwhile, the H

FIG. 4. (a) *Cmca* structure of molecular hydrogen at 300 GPa.⁹⁵ (b) Structure of SrH₁₀.⁹⁵ (c) $\delta T_c / \delta \alpha^2 F(\omega)$ (red solid curve) and $\alpha^2 F(\omega)$ (green dashed curve) as functions of frequency ω for SrH₁₀ at 300 GPa.⁹⁵ (d) Structure of HfH₁₀ and electron localization function on the (001) plane.⁹⁶ (e) Projected electronic DOS of HfH₁₀ and ZrH₁₀.⁹⁶ (f) Superconducting parameters for YH₁₀, LaH₁₀, HfH₁₀, and ZrH₁₀.⁹⁶ (a)–(c) Reprinted with permission from Tanaka *et al.*, Phys. Rev. B **96**, 100502 (2017). Copyright 2017 American Physical Society. (d)–(f) Reprinted with permission from Xie *et al.*, Phys. Rev. Lett. **125**, 217001 (2020). Copyright (2020) American Physical Society.

atoms form hexagonal H₁₂ rings in the *ab* plane. In fact, in the bond length range of <1.3 Å, all H atoms form two kinds of cages: one is the empty H₁₄ cage, and the other is the opened H₃₆ cage surrounding the Ac atom. The two structures are estimated to exhibit strong EPC and high $T_{\rm C}$ values of 251 K at 200 GPa for AcH₁₀ and 241 K at 150 GPa for AcH₁₆ [Fig. 3(k)]. In addition, their $T_{\rm C}$ values decrease monotonically with pressure.⁹⁴

IV. TWO-DIMENSIONAL HYDROGEN CONFIGURATION

Just as a cage structure is not the only structural motif that can support strong EPC, a 2D hydrogen configuration has also been predicted to lead to high- $T_{\rm C}$ superconductivity, such as in the *Cmca* metallic phase of solid hydrogen with $T_{\rm C}$ = 242 K at 450 GPa.⁴ To date, two types of superhydrides with 2D hydrogen configuration have also been predicted to have high $T_{\rm C}$ values above 200 K, examples of which include SrH₁₀⁹⁵ and HfH₁₀.⁹⁶

Similar to solid Cmca hydrogen [Fig. 4(a)], SrH₁₀ also has puckered honeycomb H layers with H–H bond lengths between 0.998 and 1.011 Å, with Sr atoms being inserted into the interlayers [Fig. 4(b)].⁹⁵ The continuous phonon modes and Eliashberg spectral function in the whole frequency range [Fig. 4(c)] induce strong EPC $(\lambda = 3.08)$ and a high $T_{\rm C}$ of 259 K at 300 GPa. On the other hand, it has recently been proposed that a planar pentagraphene-like hydrogen motif can be stabilized by Hf, Zr, Sc, or Lu atoms, forming novel 2D H_{10} units via H–H covalent bonds [Fig. 4(d)].⁹⁶ The metal atoms act as a precompressor and electron donor to the hydrogen sublattice. Metal *d* and H *s* and *p* orbitals are the main contributors to the DOS and generate distinct van Hove singularities, resulting in a large total DOS at $E_{\rm F}$ comparable to that of LaH₁₀ [Fig. 4(e)]. Therefore, high- $T_{\rm C}$ superconductivity induced by strong EPC is obtained theoretically in HfH_{10} ($T_{\rm C}$ = 234 K at 250 GPa) and ZrH_{10} ($T_{\rm C}$ = 220 K at 250 GPa). Comparison with YH_{10} and LaH_{10} indicates that the high T_{C} values in these hydrides mainly originate from the interaction of electrons with optical phonons and the high DOS at E_F associated with H atoms [Fig. 4(f)]. By contrast, ScH_{10} and LuH_{10} are predicted to have lower $T_{\rm C}$ values of 158 K at 250 GPa and 152 K at 200 GPa, respectively.⁹⁶

V. DISCUSSION AND CONCLUSION

On the whole, as predicted by Ashcroft,¹² a large number of hydrides have been found to exhibit high- $T_{\rm C}$ superconductivity above 200 K at lower pressures than are required for metallic hydrogen. Specifically, more and more theoretical predictions have been verified experimentally. In terms of the modes of arrangement of hydrogen atoms, these high- $T_{\rm C}$ hydrides (>200 K) contain different hydrogen configurations such as isolated hydrogen atoms in covalent hydrides, 2D planar and puckered hydrogen motifs, and 3D diverse hydrogen cages. In spite of the appearance of a variety of hydrogen configurations, one common feature of these hydrides is that all the hydrogen atoms form covalent bonds with hydrogen or other atoms, inducing significant H-contributed metallicity, strong EPC, and high- $T_{\rm C}$ superconductivity.

On the other hand, hydrogen is the simplest atom, and exhibits explicit bonding behavior at ambient pressure, but its bonding mechanism under high pressure is rather complex and even unconventional. For instance, how does pressure induce H atoms to form various cages via covalent bonding? These H configurations are completely different from those in the molecular phase at ambient pressure. How do different metal atoms affect H–H covalent bonds and superconductivity in the same hydrogen lattice framework? How do different metal atoms give rise to the formation of various hydrogen sublattices? These questions pose new challenges to highpressure physics and chemistry.

The discovery of various binary hydrides with $T_{\rm C}$ above 200 K has provided a great stimulus to research into how these critical temperatures can be further raised via doping/substitution, as well as into ternary hydride superconductors. Exploration of ternary hydrides will surely lead to the prediction and synthesis of yet more high- $T_{\rm C}$ superconductors. The advances achieved with high- $T_{\rm C}$ hydrides not only indicate the great potential for achieving room-temperature superconductivity, but also provide a vast arena in which to study the formation mechanisms and physicochemical properties of novel hydrides under extreme conditions.

With the development of advanced synthetic methods and measurement techniques, as well as new theoretical methods, the day on which room-temperature superconductivity is finally achieved is getting closer. From the perspective of practical applications, the urgent task is to reduce the pressure required for stability of the hydrides while maintaining their high $T_{\rm C}$ values. On the other hand, the search for new structural types of superconductors provides an impetus for the development and enrichment of condensed matter theory.

ACKNOWLEDGMENTS

The authors acknowledge funding support from the Natural Science Foundation of China under Grant Nos. 21873017 and 21573037, the Postdoctoral Science Foundation of China under Grant No. 2013M541283, the Natural Science Foundation of Hebei Province (Grant No. B2021203030), and the Natural Science Foundation of Jilin Province (Grant No. 20190201231JC).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

X.Z. and Y.Z. contributed equally to this paper.

REFERENCES

¹H. Kamerlingh Onnes, "The superconductivity of mercury," Comm. Phys. Lab. Univ. Leiden **122**, 122 (1911).

²L. Gao, Z. J. Huang, R. L. Meng, J. G. Lin, F. Chen, L. Beauvais, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, "Study of superconductivity in the Hg-Ba-Ca-Cu-O system," Physica C 213, 261 (1993).

³L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, "Superconductivity up to 164 K in HgBa₂Ca_{*m*-1}Cu_{*m*</sup>O_{2*m*+2+ δ} (*m* = 1, 2, and 3) under quasihydrostatic pressures," Phys. Rev. B **50**, 4260 (1994). ⁴P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K.}

U. Gross, "Ab initio description of high-temperature superconductivity in dense molecular hydrogen," Phys. Rev. Lett. **100**, 257001 (2008).

⁵L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He, and G. Zou, "Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure," Solid State Commun. **141**, 610 (2007).

⁶H. Y. Geng, "Public debate on metallic hydrogen to boost high pressure research," Matter Radiat. Extremes **2**, 275 (2017).

⁷J. M. McMahon and D. M. Ceperley, "High-temperature superconductivity in atomic metallic hydrogen," Phys. Rev. B **84**, 144515 (2011).

⁸E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-K. Mao, "Everything you always wanted to know about metallic hydrogen but were afraid to ask," Matter Radiat. Extremes **5**, 038101 (2020).

⁹N. W. Ashcroft, "Metallic hydrogen: A high-temperature superconductor?," Phys. Rev. Lett. **21**, 1748 (1968).

¹⁰P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, "Electron-phonon interaction and superconductivity in metallic molecular hydrogen. II. Superconductivity under pressure," Phys. Rev. B 81, 134506 (2010).

¹¹J. M. McMahon and D. M. Ceperley, "Erratum: High-temperature superconductivity in atomic metallic hydrogen," Phys. Rev. B 85, 219902 (2012).

¹²N. W. Ashcroft, "Hydrogen dominant metallic alloys: High temperature superconductors?," Phys. Rev. Lett. **92**, 187002 (2004).

¹³S. Ying, L. Han-Yu, and M. Yan-Ming, "Progress on hydrogen-rich superconductors under high pressure," Acta Phys. Sin. **70**, 017407 (2021).

¹⁴J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, "A perspective on conventional high-temperature superconductors at high pressure: Methods and materials," Phys. Rep. 856, 1 (2020).

¹⁵D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, "On distribution of superconductivity in metal hydrides," Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020).

¹⁶H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, "Hydrogen-rich superconductors at high pressures," Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1330 (2018).

¹⁷H. Y. Lv, M. Chen, Y. Feng, W. J. Li, G. H. Zhong, and C. L. Yang, "Superconductivity of light-metal hydrides," J. Chin. Chem. Soc. **66**, 1246 (2019).

¹⁸U. Pinsook, "In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review," J. Met., Mater. Miner. **30**, 31 (2020).

¹⁹J. Ma, J. Kuang, W. Cui, J. Chen, K. Gao, J. Hao, J. Shi, and Y. Li, "Metal-elementincorporation induced superconducting hydrogen clathrate structure at high pressure," Chin. Phys. Lett. **38**, 027401 (2021).

²⁰D. Duan, Y. Liu, Y. Ma, Z. Shao, B. Liu, and T. Cui, "Structure and superconductivity of hydrides at high pressures," Natl. Sci. Rev. 4, 121 (2016).

²¹Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, "Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure," Phys. Rev. Lett. **123**, 097001 (2019).

²²E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, "Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature 586, 373 (2020).

²³T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, "Metallization and superconductivity in the hydrogen-rich ionic salt BaReH₉," J. Phys. Chem. C **119**, 18007 (2015).

²⁴S. Zhang, L. Zhu, H. Liu, and G. Yang, "Structure and electronic properties of Fe₂SH₃ compound under high pressure," Inorg. Chem. 55, 11434 (2016).

²⁵C. Kokail, W. von der Linden, and L. Boeri, "Prediction of high- T_c conventional superconductivity in the ternary lithium borohydride system," Phys. Rev. Mater. 1, 074803 (2017).

²⁶Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, "Divergent synthesis routes and superconductivity of ternary hydride MgSiH₆ at high pressure," Phys. Rev. B **96**, 144518 (2017).

²⁷M. Rahm, R. Hoffmann, and N. W. Ashcroft, "Ternary gold hydrides: Routes to stable and potentially superconducting compounds," J. Am. Chem. Soc. **139**, 8740 (2017).

²⁸D. Li, Y. Liu, F.-B. Tian, S.-L. Wei, Z. Liu, D.-F. Duan, B.-B. Liu, and T. Cui, "Pressure-induced superconducting ternary hydride H₃SXe: A theoretical investigation," Front. Phys. **13**, 137107 (2018).

²⁹X. Du, S. Zhang, J. Lin, X. Zhang, A. Bergara, and G. Yang, "Phase diagrams and electronic properties of B-S and H-B-S systems under high pressure," Phys. Rev. B 100, 134110 (2019). ³⁰K. S. Grishakov, N. N. Degtyarenko, and E. A. Mazur, "Electron, phonon, and superconducting properties of yttrium and sulfur hydrides under high pressures," J. Exp. Theor. Phys. **128**, 105 (2019).

³¹X. Liang, S. Zhao, C. Shao, A. Bergara, H. Liu, L. Wang, R. Sun, Y. Zhang, Y. Gao, Z. Zhao, X.-F. Zhou, J. He, D. Yu, G. Gao, and Y. Tian, "First-principles study of crystal structures and superconductivity of ternary YSH₆ and LaSH₆ at high pressures," Phys. Rev. B **100**, 184502 (2019).

³²D. Meng, M. Sakata, K. Shimizu, Y. Iijima, H. Saitoh, T. Sato, S. Takagi, and S.-i. Orimo, "Superconductivity of the hydrogen-rich metal hydride Li₅MoH₁₁ under high pressure," Phys. Rev. B **99**, 024508 (2019).

³³S. Di Cataldo, W. von der Linden, and L. Boeri, "Phase diagram and superconductivity of calcium borohyrides at extreme pressures," Phys. Rev. B 102, 014516 (2020).

 $^{\bf 34}$ X. Guo, R.-L. Wang, H.-L. Chen, W.-C. Lu, K. M. Ho, and C. Z. Wang, "Stability and superconductivity of TiPH_n (n = 1–8) under high pressure," Phys. Lett. A **384**, 126189 (2020).

³⁵X. Li, Y. Xie, Y. Sun, P. Huang, H. Liu, C. Chen, and Y. Ma, "Chemically tuning stability and superconductivity of P–H compounds," J. Phys. Chem. Lett. **11**, 935 (2020).

³⁶Y. Sun, Y. Tian, B. Jiang, X. Li, H. Li, T. Iitaka, X. Zhong, and Y. Xie, "Computational discovery of a dynamically stable cubic SH₃-like high-temperature superconductor at 100 GPa via CH₄ intercalation," Phys. Rev. B 101, 174102 (2020).
³⁷Y. Yan, T. Bi, N. Geng, X. Wang, and E. Zurek, "A metastable CaSH₃ phase composed of HS honeycomb sheets that is superconducting under pressure,"

J. Phys. Chem. Lett. 11, 9629 (2020). ³⁸S. Y. Lee, J.-Y. Hwang, J. Park, C. N. Nandadasa, Y. Kim, J. Bang, K. Lee, K. H. Lee, Y. Zhang, Y. Ma, H. Hosono, Y. H. Lee, S.-G. Kim, and S. W. Kim, "Ferromagnetic

Y. Zhang, Y. Ma, H. Hosono, Y. H. Lee, S.-G. Kim, and S. W. Kim, "Ferromagnetic quasi-atomic electrons in two-dimensional electride," Nat. Commun. 11, 1526 (2020).

³⁹M. I. Eremets and A. P. Drozdov, "High-temperature conventional superconductivity," Phys.-Usp. **59**, 1154 (2016).

⁴⁰Y. Yao and J. S. Tse, "Superconducting hydrogen sulfide," Chem. - Eur. J. 24, 1769 (2018).

⁴¹E. Zurek and T. Bi, "High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective," J. Chem. Phys. 150, 050901 (2019).

⁴²L. Boeri and G. B. Bachelet, "Viewpoint: The road to room-temperature conventional superconductivity," J. Phys.: Condens. Matter **31**, 234002 (2019).

⁴³Y. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. Yao, "Hole-doped room-temperature superconductivity in $H_3S_{1-x}Z_x$ (Z = C, Si)," Mater. Today Phys. 15, 100330 (2020).

⁴⁴D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, "Pressure-induced metallization of dense $(H_2S)_2H_2$ with high- T_c superconductivity," Sci. Rep. **4**, 6968 (2014).

⁴⁵A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system," Nature 525, 73 (2015).

⁴⁶F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, "Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to roomtemperature superconductivity," Phys. Rev. Lett. **119**, 107001 (2017).

⁴⁷A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, "Superconductivity at 250 K in lanthanum hydride under high pressures," Nature 569, 528 (2019).

⁴⁸M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, "Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures," Phys. Rev. Lett. **122**, 027001 (2019).

⁴⁹H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, "Potential high-*T_c* superconducting lanthanum and yttrium hydrides at high pressure," Proc. Natl. Acad. Sci. U. S. A. **114**, 6990 (2017).

⁵⁰E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, "Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures," Phys. Rev. Lett. **126**, 117003 (2021).

REVIEW

⁵¹D. Zhou, D. V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A. R. Oganov, and T. Cui, "Superconducting praseodymium superhydrides," Sci. Adv. 6, eaax6849 (2020).

⁵²J. Lv, Y. Sun, H. Liu, and Y. Ma, "Theory-orientated discovery of hightemperature superconductors in superhydrides stabilized under high pressure," Matter Radiat. Extremes 5, 068101 (2020).

⁵³V. Struzhkin, B. Li, C. Ji, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, "Superconductivity in La and Y hydrides: Remaining questions to experiment and theory," Matter Radiat. Extremes 5, 028201 (2020).
⁵⁴C. W. Glass, A. R. Oganov, and N. Hansen, "USPEX—Evolutionary crystal structure prediction," Comput. Phys. Commun. 175, 713 (2006).

⁵⁵A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, "New developments in evolutionary structure prediction algorithm USPEX," Comput. Phys. Commun. 184, 1172 (2013).

⁵⁶Y. Yao, J. S. Tse, and K. Tanaka, "Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm," Phys. Rev. B 77, 052103 (2008).

⁵⁷Y. Wang, J. Lv, L. Zhu, and Y. Ma, "Crystal structure prediction via particleswarm optimization," Phys. Rev. B 82, 094116 (2010).

⁵⁸Y. Wang, J. Lv, L. Zhu, and Y. Ma, "CALYPSO: A method for crystal structure prediction," Comput. Phys. Commun. **183**, 2063 (2012).

⁵⁹D. C. Lonie and E. Zurek, "XTALOPT: An open-source evolutionary algorithm for crystal structure prediction," Comput. Phys. Commun. **182**, 372 (2011).

⁶⁰K. J. Michel and C. Wolverton, "Symmetry building Monte Carlo-based crystal structure prediction," Comput. Phys. Commun. 185, 1389 (2014).

⁶¹K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H.-T. Wang, and D. Xing, "A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search," Sci. Bull. **63**, 817 (2018).

⁶²I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, "Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride," Nature **578**, 66 (2020).

⁶³I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, "Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system," Nature 532, 81 (2016).

⁶⁴N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, "What superconducts in sulfur hydrides under pressure and why," Phys. Rev. B **91**, 060511 (2015).

⁶⁵L. Liu, C. Wang, S. Yi, K. W. Kim, J. Kim, and J.-H. Cho, "Microscopic mechanism of room-temperature superconductivity in compressed LaH₁₀," Phys. Rev. B **99**, 140501 (2019).

⁶⁶M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, "Crystal structure of the superconducting phase of sulfur hydride," Nat. Phys. **12**, 835 (2016).

⁶⁷Y. Ge, F. Zhang, and Y. Yao, "First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution," Phys. Rev. B 93, 224513 (2016).

⁶⁸D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, "Cubic H₃S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur," Phys. Rev. B **91**, 184511 (2015).

⁶⁹D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, "Pressure-induced decomposition of solid hydrogen sulfide," Phys. Rev. B **91**, 180502 (2015).

⁷⁰E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, "Superconductivity in diamond," Nature 428, 542 (2004).

⁷¹K.-W. Lee and W. E. Pickett, "Superconductivity in boron-doped diamond," Phys. Rev. Lett. **93**, 237003 (2004).

⁷²K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu, "Superconducting Fe-based compounds $(A_{1-x}Sr_x)Fe_2As_2$ with A = K and Cs with transition temperatures up to 37 K," Phys. Rev. Lett. **101**, 107007 (2008).

⁷³S. A. J. Kimber, A. Kreyssig, Y.-Z. Zhang, H. O. Jeschke, R. Valentí, F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman, and D. N. Argyriou, "Similarities between structural distortions under pressure and chemical doping in superconducting BaFe₂As₂," Nat. Mater. 8, 471 (2009).

⁷⁴L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, G. Liu, H. Wang, and Y. Ma, "Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures," arXiv:2103.16282 (2021).

⁷⁵H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, "Superconductive sodalite-like clathrate calcium hydride at high pressures," Proc. Natl. Acad. Sci. U. S. A. **109**, 6463 (2012).

⁷⁶S. Yi, C. Wang, H. Jeon, and J.-H. Cho, "Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH₁₀," Phys. Rev. Mater. 5, 024801 (2021).

⁷⁷C. Wang, S. Yi, S. Liu, and J.-H. Cho, "Underlying mechanism of charge transfer in Li-doped MgH₁₆ at high pressure," Phys. Rev. B **102**, 184509 (2020).

⁷⁸C. Wang, S. Yi, and J.-H. Cho, "Multiband nature of room-temperature superconductivity in LaH₁₀ at high pressure," Phys. Rev. B **101**, 104506 (2020).

⁷⁹S. F. Elatresh, T. Timusk, and E. J. Nicol, "Optical properties of superconducting pressurized LaH₁₀," Phys. Rev. B **102**, 024501 (2020).

⁸⁰D. A. Papaconstantopoulos, M. J. Mehl, and P. H. Chang, "High-temperature superconductivity in LaH₁₀," Phys. Rev. B 101, 060506 (2020).

⁸¹C. Wang, S. Yi, and J.-H. Cho, "Pressure dependence of the superconducting transition temperature of compressed LaH₁₀," Phys. Rev. B **100**, 060502 (2019).

⁸²M. Kostrzewa, K. M. Szczęśniak, A. P. Durajski, and R. Szczęśniak, "From LaH₁₀ to room-temperature superconductors," Sci. Rep. 10, 1592 (2020).

⁸³Y.-L. Hai, N. Lu, H.-L. Tian, M.-J. Jiang, W. Yang, W.-J. Li, X.-W. Yan, C. Zhang, X.-J. Chen, and G.-H. Zhong, "Cage structure and near room-temperature superconductivity in TbH_n (n = 1-12)," J. Phys. Chem. C **125**, 3640 (2021).

⁸⁴P. Tsuppayakorn-aek, U. Pinsook, W. Luo, R. Ahuja, and T. Bovornratanaraks, "Superconductivity of superhydride CeH₁₀ under high pressure," Mater. Res. Express 7, 086001 (2020).

⁸⁵D. Wang, H. Zhang, H.-L. Chen, J. Wu, Q.-J. Zang, and W.-C. Lu, "Theoretical study on UH₄, UH₈ and UH₁₀ at high pressure," Phys. Lett. A 383, 774 (2019).

⁸⁶X.-h. Wang, F.-w. Zheng, Z.-w. Gu, F.-l. Tan, J.-h. Zhao, C.-l. Liu, C.-w. Sun, J. Liu, and P. Zhang, "Hydrogen clathrate structures in uranium hydrides at high pressures," ACS Omega 6, 3946 (2021).

⁸⁷D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, "Superconductivity at 161 K in thorium hydride ThH₁₀: Synthesis and properties," Mater. Today **33**, 36 (2020).

⁸⁸X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, "Compressed sodalite-like MgH₆ as a potential high-temperature superconductor," RSC Adv. 5, 59292 (2015).

⁸⁹Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, "Pressure-stabilized superconductive yttrium hydrides," Sci. Rep. 5, 9948 (2015).

⁹⁰X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, and N. W. Ashcroft, "High hydrides of scandium under pressure: Potential superconductors," J. Phys. Chem. C 122, 6298 (2018).

⁹¹ I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, "Anomalous high-temperature superconductivity in YH₆," Adv. Mater. **33**, 2006832 (2021).

⁹²H. Xie, D. Duan, Z. Shao, H. Song, Y. Wang, X. Xiao, D. Li, F. Tian, B. Liu, and T. Cui, "High-temperature superconductivity in ternary clathrate YCaH₁₂ under high pressures," J. Phys.: Condens. Matter **31**, 245404 (2019).

⁹³X. Liang, A. Bergara, L. Wang, B. Wen, Z. Zhao, X.-F. Zhou, J. He, G. Gao, and Y. Tian, "Potential high-T_c superconductivity in CaYH₁₂ under pressure," Phys. Rev. B 99, 100505 (2019).

 94 D. V. Semenok, A. G. Kvashnin, I. A. Kruglov, and A. R. Oganov, "Actinium hydrides AcH₁₀, AcH₁₂, and AcH₁₆ as high-temperature conventional superconductors," J. Phys. Chem. Lett. **9**, 1920 (2018).

⁹⁵K. Tanaka, J. S. Tse, and H. Liu, "Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure," Phys. Rev. B **96**, 100502 (2017).

⁹⁶H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, "Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor," Phys. Rev. Lett. **125**, 217001 (2020).